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Abstract13

The use of magnetometers for space exploration is inhibited by magnetic noise gener-14

ated by spacecraft electrical systems. Mechanical booms are traditionally used to extend15

magnetometers away from noise sources. If a spacecraft is equipped with multiple mag-16

netometers, signal processing algorithms can be used to compare magnetometer mea-17

surements and remove stray magnetic noise signals. We propose the use of density-based18

cluster analysis to identify spacecraft noise signals and compressive sensing to separate19

spacecraft noise from geomagnetic field data. This method assumes no prior knowledge20

of the number, location, or amplitude of noise signals, but assumes that they are inde-21

pendent and have minimal overlapping spectral properties. We demonstrate the valid-22

ity of this algorithm by separating high latitude magnetic perturbations recorded by SWARM23

from noise signals in simulation and in a laboratory experiment using a mock CubeSat24

apparatus. In the case of more noise sources than magnetometers, this problem is an in-25

stance of Underdetermined Blind Source Separation (UBSS). This work presents a UBSS26

signal processing algorithm to remove spacecraft noise and minimize the need for a me-27

chanical boom.28

Plain Language Summary29

Magnetometers are instruments designed to measure magnetic fields. They are used30

for a variety of purposes such as monitoring the magnetic field of the Earth from space-31

craft. Spacecraft systems such as solar panels and reaction wheels generate magnetic noise32

that interferes with magnetometer readings. If the spacecraft has multiple magnetome-33

ters, each noise source will have a different magnitude at each magnetometer depend-34

ing on the location of the noise source. The system which describes the magnitude of35

each noise source at each magnetometer is called a mixing matrix. We propose the use36

of unsupervised machine learning to estimate the mixing matrix. Once the mixing ma-37

trix is estimated, the Earth’s magnetic field can be separated from spacecraft magnetic38

noise using a method called Compressive Sensing.39

1 Introduction40

Spacecraft equipped with magnetometers can be used to capture in situ measure-41

ments of magnetic phenomena in the geospace environment. These measurements are42

necessary to answer key questions about the nature of the Earth’s magnetosphere and43

its interaction with interplanetary magnetic fields. Understanding how the heliosphere44

directs the flow of energy, mass, and momentum between the Sun and Earth is critical45

for applications such as space weather modeling, space exploration, and climate science.46

A number of missions use spacecraft equipped with magnetometers to measure magnetic47

fields. For example, The European Space Agency’s SWARM mission uses a constella-48

tion of three satellites to provide high fidelity magnetic field measurements used to model49

the Earth’s magnetic field and study the Earth’s dynamo (Fratter et al., 2016). Mag-50

netometers provide invaluable data for space science research, however, the quality of51

the data are often limited by magnetic noise generated by the spacecraft. Electrical sys-52

tems onboard a spacecraft generate stray magnetic fields that interfere with magnetic53

field measurements. The strength of magnetic fields in the geospace environment ranges54

several orders of magnitude with natural phenomena such as the interplanetary magnetic55

field occurring on the order of 6 nT to the Earth’s magnetosphere in low Earth orbit mea-56

suring on the order of 60,000 nT. Spacecraft sub-system magnetic fields may completely57

eclipse the perturbations in natural magnetic fields which are of interest to understand-58

ing waves and currents in the solar wind and magnetosphere. The presence of these stray59

magnetic fields is a significant obstacle for missions that utilize magnetic field data (Russell,60

2004; Ludlam et al., 2009).61
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On satellites, stray magnetic fields can be generated by subsystems such as solar62

panels, reaction wheels, battery currents, and magnetorquers. The magnetometer on the63

bus of the CubeSat, Ex-Alta 1, recorded magnetic field noise generated by a magnetor-64

quer which exceeded 7500 nT peak-to-peak (Miles et al., 2016). Satellite magnetome-65

ters are typically fixed at the end of a mechanical boom to reduce the magnitude of noise66

generated by the spacecraft. For example, the mission SWARM uses two magnetome-67

ters mounted on a 4.3 meter boom (McMahon et al., 2013). However, the use of a boom68

is not always possible in designs such as rovers and CubeSats where gravity and cost are69

limiting factors. Additionally, the implementation of a boom does not always guaran-70

tee the elimination of spacecraft noise from magnetic field measurements. The spacecraft,71

DMSP, employs a single magnetometer on the end of a 5 meter boom, but still faces is-72

sues with spacecraft noise (Kilcommons et al., 2017).73

The use of a single magnetometer on a spacecraft requires a careful magnetic clean-74

liness design and characterization of the spacecraft’s magnetic signature in order to min-75

imize stray magnetic fields. In the case of the spacecraft Cassiope, a software update changed76

the behavior of the spacecraft’s fluxgate magnetometer (MGF). Special spacecraft ma-77

neuvers to decrease the spacecraft’s noise signature were required in order to recalibrate78

the MGF (Miles et al., 2019). Algorithms to autonomously identify spacecraft noise would79

allow Cassiopie to do in situ MGF calibration without special spacecraft maneuvers.80

In spacecraft with multiple magnetometers, the traditional way to cancel stray mag-81

netic field noise is to perform gradiometry. Gradiometry is a technique which compares82

magnetometer signals from two spatially separated sensors and calculates the gradient83

of between them. Ness et al. (1971) uses the gradient to fit a dipole to the spacecraft84

noise and formulate a coupling matrix. The coupling matrix is then used to subtract the85

spacecraft noise from the magnetometer measurements. This method can also be applied86

to higher order magnetic fields but requires arduous pre-flight characterization of the space-87

craft’s magnetic signature. Ream et al. (2021) uses gradients in the frequency domain88

to identify and suppress spacecraft noise. However, this method assumes that the spec-89

tra of the ambient magnetic field and the spacecraft noise do not overlap. Pope et al.90

(2011) uses the axial gradients and fuzzy logic to identify spacecraft noise according to91

the subsystem that generates it. The identified noise segments are then corrected in the92

time domain using information about the noise generated by the subsystem. This method93

is successful at identifying and removing many different individual noise sources, how-94

ever, it is not designed to correct multiple concurrent noise sources.95

Other noise cancellation methods employ state estimation of the magnetic fields96

generated by spacecraft subsystems by examining spacecraft housekeeping data. Deshmukh97

et al. (2020) uses a supervised machine learning algorithm in order to estimate the trans-98

fer function of housekeeping currents to stray magnetic fields. Total knowledge of a space-99

craft’s magnetic signature would allow for perfect interference cancellation, however, house-100

keeping telemetry provides an incomplete mapping of a spacecraft’s current distribution.101

Additionally, housekeeping data are often sampled at a low cadence and may not have102

the appropriate bandwidth to identify higher frequency noise. For low cost applications103

with a large number of spacecraft, such as CubeSat constellations, it is advantageous to104

use an algorithm that does not require a boom, rely on prior knowledge of the spacecraft’s105

magnetic signature, or requires human analysis.106

Recent progress has been made in magnetometer noise cancellation through the ap-107

plication of blind source separation (BSS) algorithms. BSS is the separation of a mix-108

ture of source signals without prior knowledge of the signal type or magnetometer lo-109

cation. Constantinescu et al. (2020) use Maximum Variance Analysis (MVA) to clean110

spacecraft magnetometer data. The MVA algorithm finds an orthogonal set of axes to111

maximize the variance of the measured signals. These axes represent the principle com-112

ponents which are used to identify and remove noise sources. This application of MVA113

requires that the variance in the noise sources is larger than the variance in the back-114
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ground magnetic field, and can only identify a limited number of noise signals. Imajo115

et al. (2021) proposed the use of Independent Component Analysis (ICA) to separate116

geomagnetic field data, captured by the satellite Michibiki-1, from stray magnetic field117

noise. This algorithm separates signals based on statistical independence, and works well118

when the number of noise sources are not more than the number of magnetometers (Naik119

& Kumar, 2009). The MVA and ICA algorithms both separate signals through optimiz-120

ing statistical quantities, however, they are limited by the number of noise signals they121

can identify. Sheinker and Moldwin (2016) proposed a novel BSS algorithm that uses122

an analytical formulation to estimate the gain of a single noise source between magne-123

tometers. This method is designed for the case in which a single noise source is present,124

and does not account for the presence of multiple noise sources. Although, the method125

may be adapted to remove multiple noise sources by adding more magnetometers.126

In this work, we present the application of an Underdetermined Blind Source Sep-127

aration (UBSS) algorithm based on the unsupervised machine learning algorithm, Den-128

sity Based Spatial Clustering of Applications with Noise (DBSCAN), and compressive129

sensing to separate the ambient magnetic field from spacecraft noise. UBSS is a class of130

problems in which there are m listeners, B(k) ∈ Cm, and n noises sources, S(k) ∈ Cn,131

such that m < n (in other words, the number of noise sources is larger than the num-132

ber of magnetometers). At the frequency bin, k, the source signals combine in an un-133

known mixing matrix K ∈ Cm×n. The system used to model UBSS is defined by the134

following relationship.135

B(k) = KS(k) (1)

In this formulation, there is no limit on the number of noise sources that can be136

present. UBSS is a topic that has been thoroughly researched in other fields such as acous-137

tics and radar signal processing. In the field of acoustics, this problem is famously re-138

ferred to as the cocktail party problem. In the cocktail party problem, there is a room139

full of people each having conversations. An array of microphones is placed in the room140

to record the concurrent conversations. The microphone recordings are then used to sep-141

arate each individual voice. Guo et al. (2017) demonstrate the separation of four human142

voices using three microphones. He et al. (2021) also demonstrate the separation of six143

flutes recorded by three microphones using the DBSCAN algorithm.144

Due to the spatial structure of magnetic fields, the same algorithms developed to145

solve the cocktail party problem can not be directly applied to magnetic noise cancel-146

lation. When considering a dipole noise source, the vector magnetic field will have a dif-147

ferent magnitude and polarity depending on the magnetic latitude and radial distance148

of the magnetometer. In this work, we model the spatial structure of magnetic fields with149

a phase, although magnetic noise signals mix instantaneously. The structure of the mag-150

netic noise signal is not always dipolar, and will change depending on the geometry of151

the noise source. In magnetic underdetermined blind source separation, the mixing ma-152

trix, K, is a complex matrix representing the gain and phase of each signal at each mag-153

netometer. In radar signal processing, Bai et al. (2021) apply a similar approach by us-154

ing complex mixing matrices to model time-delayed radar signals with different direc-155

tions of arrival. In this work, we use DBSCAN to estimate the mixing matrix, K. Once156

K is known, compressive sensing is used to restore the geomagnetic field signal from the157

noisy magnetometer data.158

We present two experiments to validate this algorithm. The first experiment sep-159

arates four computer-simulated noise signals from an ambient magnetic field signal. The160

second experiment separates the same ambient magnetic field signal using real magnetic161

field data recorded using an experimental CubeSat apparatus with copper coil generated162

signals and three PNI RM3100 magnetometers (Regoli et al., 2018). The aim of this work163

is to develop a robust signal processing algorithm to remove spacecraft noise and min-164

–4–



manuscript submitted to JGR: Space Physics

imize the need for a mechanical boom or a magnetically clean spacecraft. This work fo-165

cuses on developing a noise cancellation algorithm for geomagnetic field data, but can166

also be applied to remove noise in measurements of planetary magnetospheres and in-167

terplanetary magnetic fields.168

2 Methodology169

We apply a two step approach to removing spacecraft noise and reconstructing the170

ambient magnetic field. The first step is to discover the mixing matrix, K, defined in equa-171

tion 1. This is achieved by preprocessing the magnetometer data into a clusterable form172

and applying a clustering algorithm. The second step is to reconstruct the ambient mag-173

netic field and noise signals using compressive sensing. In this step, the mixing matrix,174

K, is used to demix the magnetometer signls via convex optimization. This two step pro-175

cess is designed to be applied to each magnetometer axis separately.176

2.1 Signal Preprocessing177

The separation of magnetic field signals from stray magnetic fields is analogous to178

a problem thoroughly researched in other fields such as acoustics and is called Under-179

determined Blind Source Separation (UBSS). This problem has been heavily investigated180

for microphone and radar arrays, but the unique spatial structure of magnetic fields in-181

troduces new complications which have not been well-researched. When considering a182

dipole noise source, the placement of magnetometers at different magnetic latitudes al-183

ters the magnitude and polarity of the noise signal. We model this effect as a phase, de-184

spite the noise sources mixing instantaneously. The time-frequency domain mixing model,185

B(t,k) = KS(t,k), is defined by the following system:186


B1(t, k)
B2(t, k)

...
Bm(t, k)

 =


1 k12∠ϕ12 k13∠ϕ13 ... k1n∠ϕ1n

1 k22∠ϕ22 k23∠ϕ23 ... k2n∠ϕ2n

...
...

...
. . .

...
1 km2∠ϕm2 km3∠ϕm3 ... kmn∠ϕmn



S1(t, k)
S2(t, k)

...
Sn(t, k)

 (2)187

In this mixing system, the signals Si(t, k) are the source signals at time t and frequency188

k. The ambient magnetic field signal we seek to recover, S1(t, k), is assumed to be iden-189

tical at each magnetometer and is represented by a column of ones in the mixing ma-190

trix. In the geospace environment, this allows us to observe phenomena such as ultra-191

low frequency (ULF) waves which have frequencies less than 5 Hz (Jacobs et al., 1964).192

The phases, ϕij = {0, π}, in the mixing matrix, K, account for the difference of a sig-193

nal seen by magnetometers at different magnetic latitudes. The phase, ϕij , is determined194

by the spatial structure of the noise signal, which depends on the geometry of the noise195

source. This model does not require that noise sources be dipolar. The value in the mix-196

ing matrix kij∠ϕij represents the complex value kije
jϕij . This value defines presence of197

the signal Sj(t, k) at magnetometer Bi(t, k).198

Sparsity is a precondition of both mixing matrix estimation and compressive sens-
ing, however, spacecraft noise signals are not often sparse in the time domain. The mag-
netometer signals, b(t), are transformed into the Time-Frequency (TF) domain using a
Fourier transform in order to increase signal sparsity. Typically, the Short-Time Fourier
Transform (STFT) is used because signals that are present in multiple time windows will
provide more data points to be clustered. In this work, we use the Non-Stationary Ga-
bor Transform (NSGT) to transform magnetometer signals into the Time-Frequency do-
main. NSGT has advantages over the STFT because it allows the user to evolve the win-
dow size with respect to frequency (Holighaus et al., 2013). As a result, high and low
frequencies are not limited to the same window size, and frequency resolution is constant
across the frequency spectrum. In order to apply the NSGT, the user specifies a qual-
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ity, Q, and the lowest frequency they would like to observe. The parameter, Q, is used
to automatically calculate the window size with respect to the desired frequency reso-
lution. In comparison to the STFT, the NSGT provides finer frequency resolution at low
frequencies and better time resolution at higher frequencies. We perform the Non-Stationary
Gabor Transform to obtain the UBSS model B(t,k) = KS(t,k). The mixing system of
a sparse time-frequency bin where only the signal, Sj(t,k), is present can be defined by
a single mixing vector: 

|B1(t, k)|
|B2(t, k)|

...
|Bm(t, k)|

 =


k1j
k2j
...

kmj

 |Sj(t, k)| (3)

The operator |a+jb| applied to the complex value a+jb returns the magnitude of com-
plex value,

√
a2 + b2. Equation 3 can be rewritten element-wise as:

|Sj(t, k)| =
|B1(t, k)|

k1j
=

|B2(t, k)|
k2j

= ... =
|Bm(t, k)|

kmj
(4)

Equation 4 is equivalent to the symmetric form of a line with slope defined by the mix-199

ing vector of the noise signal. In order to find the mixing vector of a noise signal, we de-200

fine a time-frequency space H ∈ R2m in which each phase and magnitude of the m mag-201

netometer signals are an axis. Sparse TF points will draw straight lines through the ori-202

gin in the H-domain with a slope proportional to the signal’s mixing vector. Figure 1203

shows an example of a scatter plot of three mixed time-frequency signals composed of204

six source signals. The mixed signals form straight lines with slopes defined by equation205

4.206

Figure 1. Three magnetometer measurements of six computer simulated sinusoidal noise sig-

nals. Each magnetometer signal is transformed into the time-frequency domain using the STFT.

The magnitude of the three resulting TF signals are taken and plotted against each other in a

scatter plot. The scattered time-frequency points from each magnetometer form straight lines due

to Equation 4. This figure does not include the phase subdomain of the H-domain.
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2.2 Mixing Matrix Estimation207

The slope of the lines drawn through the H-domain are not easily clusterable in208

their current form as a collection of scattered data points. We transform the scattered209

data points in H-domain into a clusterable form by projecting the magnitude subdomain210

onto a unit hypersphere. The H-domain magnitude data are projected onto a half-unit211

hypersphere by normalizing the time-frequency magnetometer data via the following equa-212

tion.213

B∗(t, k) =
|B(t, k)|
∥B(t, k)∥

(5)

When the scattered data points have been normalized, they collapse into compact214

clusters. This is illustrated by the projection of the scattered data points representing215

six computer generated signals in Figure 1 onto a half-unit hypersphere in Figure 2. The216

centroid of a cluster is proportional to the mixing vector of a noise signal as defined in217

equation 2.218

Figure 2. The scattered time-frequency mixed signals in Figure 1 are projected onto a half-

unit hypersphere through normalization. The six scattered straight lines collapse into six com-

pact clusters. The centroid of each cluster is proportional to each source signals’ mixing vector in

the mixing matrix, K, due to equation 4.
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The majority of the frequency space is filled with negligible energy points that will project219

randomly onto the unit hypersphere (Sun et al., 2016). We attempt to cleanse the data220

of these points using a magnitude filter. The filter is applied by finding the average sig-221

nal magnitude and removing data points below a factor, λ, of the average signal mag-222

nitude. The magnitude filter is applied by removing data points that do not satisfy the223

following criterion:224

|B(t, k)| > λ · avg(|B(t, k)|) (6)

The projected data points form tightly clustered groups on the unit hypersphere225

that allow us to discover the relative gain between noise signals at different magnetome-226

ters. However, we need to find the relative phases between noise signals at magnetome-227

ters of different magnetic latitudes. To account for this we join each projected time-frequency228

point to its relative argument. The relative argument is defined by the following trans-229

formation:230

argB(t, k) = { argBj(t, k)− arg (B0(t, k) | j ∈ [0,m] } (7)

Using the result of Equation 7, we define a new data format, H(t,k), by concate-231

nating the projected magnitude data with the argument of the time-frequency data.232

H(t, k) = (B∗(t, k), arg (B(t, k)) (8)

The magnetometer data, H(t,k), are now in a format that can be clustered to discover233

the gain and phase of each signal described in the mixing matrix, K. Figure 3 shows an234

example of two magnetometer signals transformed into the H-Domain.235

Figure 3. An illustration of noise signals in the full H-domain for a two magnetometer sys-

tem. The horizontal axes represent the magnitude of the time-frequency magnetometer signals

projected onto a unit hypersphere. The vertical axis represents the relative argument of the mag-

netometer signals in radians as defined by equation 7. The data points are projected onto a plane

at Z = -2.5 to distinguish the difference in magnitudes. The phase and magnitude of each noise

signal at each magnetometer is discovered by clustering the data in this format.
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Now that the projected magnitude and relative phases are joined, a variety of clus-236

tering algorithms can be applied to find the mixing matrix, K. In this work, we use the237

Density Based Spatial Clustering for Applications with Noise (DBSCAN) algorithm be-238

cause it does not require user input to discern the number of clusters present, and it will239

ignore noise points (Ester et al. 1996). As a result, the number of noise signals does not240

need to be defined prior to the application of DBSCAN. DBSCAN has two essential pa-241

rameters, eps and minPts, that allow this functionality. The maximum distance for two242

points to become neighbors is the value, eps. If a point has minPts number of neighbors,243

it is called a core point. Core points are used to define each cluster. If a point is more244

than eps distance away from any point in a cluster, it is labeled as noise. We use DB-245

SCAN to cluster H(t,k) and use each cluster’s centroid as the noise signal’s mixing vec-246

tor. Once the mixing vector of each noise signal is known, the mixing vectors are joined247

to form the mixing matrix, K. The mixing matrix is used to separate the noise signals248

from the ambient magnetic field via compressive sensing.249

2.3 Signal Reconstruction250

Compressive sensing is a method used to reconstruct sparse signals with a sampling251

rate below two times a signal’s bandwidth (Baraniuk, 2007). Reconstructing a signal of252

length N from a sampled signal of length M , where M < N , is an analogous problem253

to Underdetermined Blind Source Separation. Ordinarily, the system b = Ks, where254

K is a wide matrix, has infinitely many solutions because if b = Ks is a solution, b =255

K(s+s′) is also a solution for any vector s′ in the null space of K. Compressive sens-256

ing can exactly recover sparse signals and approximate near-sparse signals through min-257

imizing the L1 norm of S with respect to b−Ks < ε. The algorithm works with O(N3)258

complexity.259

We use CVXPY, A Python-Embedded Modeling Language for Convex Optimiza-
tion, to reconstruct the signals with the estimated mixing matrix, K (Diamond & Boyd,
2016). The formulation used to recover the signal, s, from b is:

Minimize wT |s|
Subject to Ks = b

(9)

Traditionally, compressive sensing minimizes the L1 norm of the source signals, ∥s∥1, with260

respect to Ks = b in order to recover the source signals. Instead of minimizing the L1261

norm, we utilize a weighted L1 norm defined by the weighing vector, w = [w1, 1, 1, ..., 1]
T ,262

where w1 ≥ 1. The parameter, w1, is multiplied with the ambient magnetic field sig-263

nal, s1, in order to deter the attribution of energy from other noise signals to it. In the264

case that the source signals, s, are not sparse at a time-frequency bin, the additional weight265

increases the cost of attributing energy from other signals to the ambient magnetic field,266

s1. The optimal value of the weight, w1, depends on the signature of noise signals. Candès267

et al. (2008) apply a similar approach by iteratively adjusting the weight of each signal268

with respect to the magnitude of the signal. In this work, we found the optimal weight,269

w1, experimentally by comparing the reconstructed signal, ŝ1, to the true signal, s1.270

This system defined in equation 9 is solved using the Embedded Conic Solver (Domahidi271

et al., 2013). The Embedded Conic Solver (ECOS) algorithm is a convex optimization272

algorithm that transforms the problem defined in equation 9 into a Second Order Cone273

Problem (SOCP). SOCP problems are convex optimization problems that minimize lin-274

ear functions with respect to second order cone constraints (Alizadeh & Goldfarb, 2003).275

The ECOS algorithm applies an interior point solver to converge on the sparse solution276

of the problem defined by equation 9.277
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3 Experimental Data and Results278

We test the proposed method of signal and noise separation through two exper-279

iments. The first experiment demonstrates the separation of SWARM magnetic field data280

from computer simulated signals using virtual magnetometers. The second experiment281

demonstrates the separation of SWARM magnetic field data from real magnetic noise282

signals generated with copper coils. The coil-generated magnetic fields were measured283

using the PNI RM3100 magnetometer and a mock CubeSat described by Deshmukh et284

al. (2020).285

Figure 4 details the process of identifying noise signals and reconstructing the am-286

bient magnetic field. First (i), the signal offsets are subtracted to center the signals around287

0 nT. Second (ii), the signals are transformed into the time-frequency domain using the288

Non-Stationary Gabor Transform to increase signal sparsity. Third (iii), low energy points289

are filtered out using Equation 6. Fourth (iv), the signals are transformed into H(t,k)290

by projecting the magnitude, |B(t, k)| onto the unit hypersphere and concatenating it291

with the phase, argB(t, k), via Equations 5, 7, and 8. Fifth (v), the data, H(t,k), are clus-292

tered using DBSCAN and the cluster centroids are found. Finally, in the last step (vi),293

compressive sensing is used to reconstruct the ambient magnetic field. The minimum mag-294

nitude, λ in step iii, and the parameters eps and MinPts in step v may need to be ad-295

justed depending on the length and magnitude of the signals being analyzed.296
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Figure 4. Flow of processes involved in using cluster analysis to discover noise signals and

compressive sensing to separate the ambient magnetic field from noise signals.

We evaluate the separation of noise signals via three metrics. The metrics are cal-297

culated point-wise using the reconstructed signal, x and the true signal, y, over N data298

points. The first metric is the Pearson Correlation Coefficient. This measurement gives299

the covariance between the normalized input and recovered signals.300

ρ =

∑N−1
i=0 (xi − x̄)(yi − ȳ)√∑N−1

i=0 |(xi − x̄)|2
∑N−1

i=0 |(yi − ȳ)|2
(10)

The second metric evaluated is the root mean squared error (RMSE). This met-301

ric is proportional to the magnitude of the squared error. As a result, the RMSE is very302

sensitive to large errors.303

RMSE =

√∑N−1
i=0 (xi − yi)

2

N
(11)

The final metric is the normalized RMSE (NRMSE). This metric yields the RMSE304

as a percentage of the magnitude of the signal being measured. It is used to compare305

the relative error between signals on different orders of magnitude. We calculate the NRMSE306

by dividing the RMSE of the signal by the max amplitude of the absolute value of the307

true signal, |y|max.308

NRMSE =
RMSE

|y|max
(12)

3.1 Experiment 1: Computer Simulation309

In this experiment, we use four simulated noise signals, s(t) ⊃ [s2(t), s3(t), s4(t), s5(t)],310

and three virtual magnetometers b(t) = Ks(t) = [b1(t), b2(t), b3(t)]. The signal, s1(t),311

is residual magnetic field data created by subtracting data generated by the IGRF model312

from SWARM magnetic field data. This process leaves only magnetic perturbations present313
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in the magnetosphere. The magnetic perturbation data we use were measured by the SWARM314

A satellite on March 17th, 2015 between 8:53 and 8:55 UTC. This part of the orbit passes315

between the 69th and 76th parallel south and was selected to capture perturbations in316

the southern auroral zone. The proposed algorithm detailed in Figure 4 is tested on 100317

seconds of data, although it may be applied to a signal of any length provided that there318

are enough data points to cluster. The signals are combined through the complex mix-319

ing matrix in Equation 13 with phases given in radians.320

K =

1∠0 0.99∠0 0.09∠0 0.70∠0 0.02∠0
1∠0 0.09∠π 0.99∠0 0.70∠0 0.05∠π
1∠0 0.12∠π 0.12∠π 0.13∠π 0.99∠π

 (13)

The values in the first column represent the ambient magnetic field signal which appears321

identically at every magnetometer. Figure 5 shows the five source signals used in this322

simulation. Two of the noise signals are sine waves with frequencies of 2 Hz and 5 Hz.323

Sine waves are sparse signals that can be represented by a single point in the frequency324

domain. This makes them easily identifiable by cluster analysis. The two remaining noise325

signals used are a sawtooth wave with a frequency of 0.7 Hz, and a square wave with a326

frequency of 3.0 Hz. These signals inhabit a broad frequency spectrum and diminish the327

sparsity of the mixed signals.328

Figure 5. Ten seconds of four source signals used to simulate spacecraft noise and one signal

to simulate the ambient magnetic field. (a) The ambient magnetic field signal using SWARM A

data starting from March 17th, 2015 at 8:53 UTC. (b) A 2 Hz sine wave with amplitude of 50

nT. (c) A 3 Hz square wave with a magnitude of 100 nT. (d) A sine wave with a frequency of 5

Hz and amplitude of 50 nT. (e) A sawtooth wave with an amplitude of 110 nT and frequency of

0.7 Hz.

The signals are combined in the mixing system b(t) = Ks(t) with the mixing matrix329

K from equation 13. The resulting signals are sampled by the virtual magnetometers at330

a rate of 50 samples per second. Different noise signals, such as noise generated by re-331

action wheels, may have higher frequency components and require a higher sampling rate332

in order to avoid aliasing (Pope et al., 2011; Miles et al., 2016). A random normal sig-333

nal with a standard deviation of 6 nT is added to each virtual magnetometer in order334

to simulate instrument noise. This noise level corresponds to the rated instrument noise335

of the PNI RM3100 magnetometer at 50 Hz used in experiment 2. Figure 6 shows the336

sampled signals.337
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Figure 6. Plots (a), (b), and (c) show one hundred seconds of three magnetometer signals,

b(t), created by mixing the five source signals in Figure 5 though the mixing matrix defined in

equation 13.

Following the procedure in Figure 4, the signals were detrended and transformed338

into the Time-Frequency domain using the NSGT. The NSGT is a type of constant-Q339

transform, so it requires the parameter Q which specifies window size. In this experiment,340

we used Q = 10 and a lower frequency bound of 30 mHz. In step 4, low energy points341

were removed using a λ = 0.5. The resulting data were transformed into H(t,k) and342

clustered by DBSCAN with parameters eps = 0.3 and MinPts = 4. These parame-343

ters were optimized experimentally using trial and error, however it may be possible to344

automate parameter selection based on the signals being analyzed. With this configu-345

ration, DBSCAN discovered the five clusters corresponding to each noise source. The346

clusters, shown below in the columns of K̂, closely match the original mixing matrix.347

K̂ =

1∠0 0.99∠0.00 0.697∠0.00 0.10∠0.00 0.05∠0.00
1∠0 0.10∠− 0.02 0.697∠0.14 0.99∠0.06 0.14∠3.10
1∠0 0.12∠− 3.10 0.135∠3.14 0.12∠− 3.10 0.98∠− 3.16

 (14)

Finally, in step 7, the mixed signals were separated by compressive sensing using348

the recovered mixing matrix, K̂, in Equation 14. The data, H(t,k), are discarded and349

the raw Fourier transform of the mixed signals are separated by applying the ECOS al-350

gorithm to the problem defined in equation 9 with a weight of w1 = 1.5. The recon-351

structed SWARM perturbation signal is shown in Figure 7, as well as a histogram of the352

reconstruction error and spectrograms of the original and reconstructed signals. A break-353

out of the reconstructed noise signals is included as Figure S1 in the supplement.354

–13–



manuscript submitted to JGR: Space Physics

Figure 7. The top plot (a) shows the cleaned magnetometer signal in blue with the ambient

magnetic field signal overlayed in orange. The second plot (b) shows a spectrogram of the origi-

nal SWARM signal and the and third plot (c) shows a spectrogram of the reconstructed SWARM

signal created using wavelet analysis. The shaded areas indicate where the wavelet does not

produce valid results. The bottom plot (d) shows a histogram of the signal reconstruction error,

s1 − ŝ1.
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The reconstructed ambient magnetic field signal resembles the original signal with some355

additional error. In order to evaluate the reconstruction noise, the Pearson Correlation356

Coefficient, RMSE, and NRMSE of each source signal are calculated. The ambient mag-357

netic field was reconstructed with a RMSE of 2.18 nT. The results for the reconstruc-358

tion of each source signal are shown in Table 1. The experiment was repeated without359

the addition of the 6 nT instrument noise to evaluate the effect of the random noise on360

the total reconstruction error.361

Table 1. Summary of Experiment 1 Results.

Metric SWARM Sine A Square Sine B Sawtooth

W
it
h
N
oi
se ρ 0.9992 0.9934 0.9983 0.9941 0.9982

RMSE 2.18 nT 4.11 nT 5.77 nT 6.39 nT 2.54 nT

NRMSE 0.62% 8.23% 5.77% 6.39% 5.35%

W
it
h
ou

t
N
oi
se ρ 0.9988 0.9927 0.9987 0.9941 0.9974

RMSE 2.84 nT 4.33 nT 7.06 nT 6.38 nT 3.42 nT

NRMSE 0.81% 8.68% 7.06% 6.38% 7.21%
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3.2 Experiment 2: Magnetic-Coil Generated Signal Separation362

In this experiment, we demonstrate the utility of the proposed algorithm on real363

magnetic field data. We use three PNI RM3100 magnetometers to record copper coil-364

generated noise signals. Four copper coils are driven by signal generators to create the365

source signals, s(t) ⊃ [s2(t), s3(t), s4(t), s5(t)]. The signals are combined in the unknown366

mixing system, b(t) = Ks(t) = [b1(t), b2(t), b3(t)]. The SWARM residual magnetic field367

data, which is used in experiment one, is added to each magnetometer recording to gen-368

erate the ambient magnetic field signal, s1(t).369

The proposed algorithm detailed in Figure 4 is tested on 100 seconds of recorded370

data. The signals, s2(t) and s3(t), are sine waves with frequencies of 0.4 Hz and 0.8 Hz.371

The signals, s4(t) and s5(t), are square waves with frequencies of 1 Hz and 2 Hz. The372

three PNI RM3100 magnetometers and four copper coils are placed on the CubeSat ap-373

paratus as shown in Figure 8. Due to the location and orientation of the four copper coils374

and three magnetometers, each noise signal will appear at each magnetometer with a dif-375

ferent magnitude and magnetic latitude induced phase. Additionally, this experiment376

was performed in a copper room lined with mu-metal in order to screen out magnetic377

fields from the surrounding environment.378

Figure 8. Mock CubeSat Apparatus with three PNI RM3100 magnetometers and four copper

coils driven by signal generators. The magnetometers are placed within the mock CubeSat. In

this study, we do not examine the effect of surface mounted sensors or sensors placed on a boom.

The Apparatus is placed inside a mu-metal lined copper room that acts as a large magnetic

shield can.

–16–



manuscript submitted to JGR: Space Physics

The PNI RM3100 is a magneto-inductive magnetometer that measures the mag-379

netic field by counting hysteresis loops with a comparator circuit, called a Schmitt Trig-380

ger, in an ASIC. The ASIC records magnetic field measurements by adding to a regis-381

ter every time the Schmitt trigger is saturated. This measurement renders the magnetic382

field when integrated with respect to time. The ASIC has a cycle count register that con-383

trols how many clock cycles pass between integrations. The error of the magnetometer384

will change with respect to the cycle count. In this experiment, each magnetometer is385

sampled at a rate of 50 Hz with a cycle count of 200 cycles. The PNI RM3100 is rated386

to have an error of 6 nT in this configuration. The mixed signals recorded by the PNI387

RM3100 magnetometers are shown in Figure 9 below.388

Figure 9. Plots (a), (b), and (c) show one hundred seconds of three mixed signals recorded

by PNI RM3100 magnetometers’ z-axis. The five signals present are two sine waves, two square

waves, and the added residual magnetic field data. The noise signals have amplitudes between 50

and 500 nT compared to the ambient magnetic field signal with a max amplitude near 300 nT.

The proposed algorithm was run on data from the magnetometers’ z-axis follow-
ing the same steps as in Figure 4 and section 3.1. The signals were detrended and trans-
formed into the Time-Frequency domain using the NSGT with a quality factor of Q =
20. In step 4, low energy points were removed using a λ = 2.5. The resulting data were
transformed into H(t,k) and clustered by DBSCAN with parameters eps = 0.4 and MinPts =
4. DBSCAN discovered the following five clusters shown below in the columns of K̂.

K̂ =

1∠0 0.023∠0 0.22∠0 0.93∠0 0.02∠0
1∠0 0.55∠1.31 0.97∠3.09 0.35∠3.04 0.04∠6.04
1∠0 0.79∠4.58 0.001∠2.94 0.15∠0.255 0.82∠2.84

 (15)

The PNI RM3100 magnetometer was experimentally found to have a lower noise389

floor when sampled at a higher rate and decimated to a lower rate versus only being sam-390

pled at a lower rate. We evaluated this effect by reconstructing the original 50 Hz data391

in step 6, then downsampling the reconstructed ambient magnetic field signal to 10 Hz,392

1 Hz, and averaging the data with a moving mean (N = 10). The magnetometer signals393

were downsampled by applying an 8th order Chebyshev type I anti-aliasing filter and394

resampling the resulting signal. The mixed signals were separated via weighted compres-395

sive sensing using a weight of w1 = 3. The four noise signals reconstructed from the396

50 Hz raw data are shown in Figure 10.397
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Figure 10. Reconstructed Sine and Square wave signals from 50 Hz mixed signals in Figure 9.

The reconstructed coil-generated signals closely resemble square and sine waves with398

some additional noise. The recovered residual magnetic field data are shown in the top399

plot of Figure 11. The recovered signal is overlayed with the true residual magnetic field400

signal. The residual data in Figure 11 were reconstructed using the mixed signals sam-401

pled at the full 50 Hz cadence. The plots below show the reconstructed signal, spectro-402

grams of the cleaned and true SWARM signal using wavelet analysis, and a histogram403

of the signal reconstruction error.404

The reconstructed signal closely follows the true geomagnetic perturbation signal405

with some high frequency noise present. As a result of the geomagnetic field signal be-406

ing artificially inserted into the magnetometer readings, we are able to calculate the RMSE407

and Pearson Correlation Coefficient with respect to the original signal. The results for408

the original, decimated, and moving-mean signals are shown in the following table. These409

results are also compared to the uncleaned magnetometer data from magnetometer (a)410

in Figure 9.411

Table 2. Summary of Experiment 2 Results.

Metric 50 Hz 10 Hz 1 Hz Moving Mean (N = 10)

R
ec
ov
er
ed

S
ig
n
al

ρ 0.9916 0.9937 0.9969 0.9935

RMSE 6.69 nT 6.28 nT 5.68 nT 6.03 nT

NRMSE 1.90% 1.81% 1.64% 1.717%

O
ri
gi
n
al

S
ig
n
al ρ 0.2126 0.2286 0.9139 0.2871

RMSE 328.08 nT 300.53 nT 30.63 nT 239.33 nT

NRMSE 93.31% 86.69% 8.84% 68.0%
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Figure 11. The top plot (a) shows the cleaned magnetometer signal in blue with the ambi-

ent magnetic field signal overlayed in orange. The second plot (b) shows a spectrogram of the

original SWARM signal and the and third plot (c) shows a spectrogram of the reconstructed

SWARM signal created using wavelet analysis. The shaded areas indicate where the wavelet does

not produce valid results. The bottom plot (d) shows a histogram of the signal reconstruction

error, s1 − ŝ1.
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4 Discussion412

In this study, we introduced a signal processing algorithm based on UBSS and demon-413

strated the separation of magnetic noise from geomagnetic field data. In the first exper-414

iment, we separated four simulated noise signals from SWARM residual magnetic field415

data. The noise signals contained both sparse sine wave signals and wideband sawtooth416

and square wave signals. The algorithm was able to restore the residual magnetic field417

signal with a correlation coefficient of ρ = 0.9968 and RMSE of 2.18 nT. When the ex-418

periment was repeated without artificial instrument noise, the algorithm reconstructed419

the ambient magnetic field signal with a RMSE of 2.84 nT. In the second experiment,420

we created four magnetic noise signals using copper coils to generate real magnetic field421

data and placed PNI RM3100 magnetometers within the bus of a mock CubeSat appa-422

ratus. The same SWARM magnetic residual data were artificially inserted into the mag-423

netometer measurements. This experiment mimicked the computer simulated experiment,424

with two sparse noise signals and two wideband noise signals. At a sampling rate of 50425

Hz, the ambient magnetic field signal was reconstructed with a RMSE of 6.69 nT as op-426

posed to 2.18 nT in simulation. The signal separation algorithm was executed using sev-427

eral additional preprocessing techniques such as decimating the sampling rate and ap-428

plying a moving mean to the magnetometer data. The lowest RMSE of 5.68 nT was achieved429

by decimating the sample rate to 1 Hz. At 1 Hz, the PNI RM3100 magnetometer is rated430

to have a measurement error of 2.7 nT due to instrument noise (Regoli et al., 2018). This431

result places the reconstruction error near the noise floor of the magnetometer. When432

the noisy magnetometer data were decimated, it reduced the RMSE of the signal mea-433

sured by magnetometer (a) in Figure 9 from 328.1 nT to 30.6 nT. In contrast, the dec-434

imation of the ambient magnetic field signal reconstructed from the proposed algorithm435

did not significantly improve the RMSE. The reconstructed signal decimated to 1 Hz had436

an RMSE of 5.68 nT compared to 6.69 nT at 50 Hz, however, the UBSS algorithm was437

able to improve the RMSE by over 20 nT compared to simple downsampling. These re-438

sults show that the proposed UBSS algorithm is effective at removing spacecraft noise439

from magnetic field data.440

In general, it is not feasible to adaptively cancel spacecraft noise when a single mag-441

netometer is used. Adaptive noise cancellation requires the removal of noise signals that442

are time variable. The use of a single magnetometer requires that spacecraft noise be443

carefully characterized before launch. Otherwise, a change in spacecraft behavior may444

require special maneuvers to re-characterize noise signatures in situ (Miles et al., 2019).445

The use of multiple magnetometers allows for the discovery of noise signals through the446

comparison of magnetometer data. Sheinker and Moldwin (2016), Deshmukh et al. (2020),447

and Imajo et al. (2021) each propose algorithms for noise cancellation using multiple mag-448

netometers. The algorithm proposed by Sheinker and Moldwin (2016) is effective at re-449

moving a single noise signal, but is not designed for multiple noise signals. Imajo et al.450

(2021) propose the use of ICA which is also limited by how many noise signals it can re-451

move. BSS algorithms require that the number of source signals be less than or equal452

to the number of mixed signals. Spacecraft contain many electrical systems that could453

generate magnetic interference, so this condition is rarely met. For example, Pope et al.454

(2011) identified seven common types of noise signals on Venus Express, which is equipped455

with two magnetometers. The advantage of the proposed UBSS algorithm over Imajo456

et al. (2021) and Sheinker and Moldwin (2016) is that it can cancel noise signals in an457

underdetermined system. This means that there are more noise signals present than mag-458

netometers. This property of the algorithm provides the flexibility necessary to be ap-459

plied to many different spacecraft without prior characterization of spacecraft noise. The460

algorithm also does not require knowledge of magnetometer location and orientation, ex-461

cept that the axis of each magnetometer are aligned. Finally, Deshmukh et al. (2020)462

designed a state estimation algorithm to transform housekeeping data to magnetic noise463

signals. Housekeeping currents provide an incomplete mapping of the distribution of cur-464

rents within a spacecraft. Additionally, housekeeping data are often sampled at a low465
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cadence and may not have the appropriate bandwidth to identify higher frequency noise.466

The advantage of the proposed UBSS algorithm over this approach is that it is a blind467

signal processing algorithm. It requires no housekeeping data to identify and remove noise468

signals.469

The proposed algorithm functions on the assumption that the noise signals are sparse,470

meaning that only one noise signal is present at a given frequency. Multiple noise sig-471

nals may be active at the same time, however, if a signal is not sparse in the frequency472

domain, then its mixing vector cannot be accurately estimated by cluster analysis. Com-473

pressive sensing also requires sparsity in order to accurately reconstruct the separate sig-474

nals. Compressive sensing can fully reconstruct sparse signals, and approximately recon-475

struct near sparse signals. In this work, we do not exhaustively explore the minimum476

sparsity required for accurate reconstruction of the ambient magnetic field.477

The proposed algorithm requires that several parameters be set by the user. In this478

study, the parameters were manually selected based on the signals being analyzed, but479

this process could also be automated. The first parameter is the quality factor, Q. This480

parameter adjusts the window size used in the Non-Stationary Gabor Transform. We481

experimentally selected it, but it may be chosen based on the length of the signal be-482

ing processed. The parameter, λ, is used to remove low energy noise signals. Data points483

that are below a fraction, λ, of the average energy data point are removed before clus-484

tering occurs. We selected this parameter by analyzing the data projected onto the half-485

unit hypersphere in Figure 2, and visually observing if the signals were clusterable. If486

λ is too small, then the hypersphere will be completely filled with data points, and the487

noise signals will not be separable. If λ is too large, then small noise signals may not ap-488

pear at all. Lastly, DBSCAN requires that two parameters, eps, and MinPts, be selected.489

The parameter, eps, represents the maximum distance allowed for two data points to be490

considered neighbors. The parameter, MinPts, represents the number of neighbors re-491

quired for a data point to be considered a core. MinPts may be selected based on the492

length of signal being processed. A disadvantage of using NSGT and DBSCAN together493

is that more data points are created for higher frequency signals because the window size494

is altered based on frequency. Therefore, MinPts should be selected based on the lower495

frequency signals.496

Most heliophysics missions require magnetic field accuracies of better than 1 nT497

(e.g., the NASA MMS mission [Russell et al., 2016]). Using the PNI RM3100 magne-498

tometer, the algorithm reconstructed the ambient magnetic field signal with an RMSE499

of 6.69 nT. This error is near the expected measurement noise for the PNI RM3100 mag-500

netometer at 50 Hz, indicating that the accuracy of the algorithm is limited to the to-501

tal error budget of the magnetometer. Nevertheless, the experiments performed show502

successful reconstruction of magnetic perturbation signals measured from within the bus503

of a mock CubeSat. These results demonstrate the utility of boomless CubeSats for sci-504

entific investigation of magnetic field phenomena in the geospace environment. In turn,505

the low cost of CubeSats enables the use of large constellations of small satellites to mea-506

sure the geomagnetic field with high temporal and spatial resolution.507

5 Conclusions and Future Work508

In this study, we propose an algorithm for separating spacecraft generated mag-509

netic noise from geomagnetic field data using multiple magnetometers. The algorithm510

does not require knowledge of the characteristics (location, orientation, amplitude, or511

spectral signature) and allows the number of noise sources to exceed the number of mag-512

netometers (n > m). The algorithm identifies signals by looking at the relative gain and513

phase of the magnetometer data in the Time-Frequency domain. If a noise signal is sparse514

in this domain, the relative gain and phase is found using cluster analysis. Following the515
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same assumption of sparsity, the signal can be separated from the noisy data using the516

cluster centroids in compressive sensing.517

The algorithm is designed for underdetermined systems in which there are more518

noise sources than magnetometers. An advantage of this approach is that the UBSS al-519

gorithm can be integrated onto any satellite since no prior characterization of noise sig-520

nals is required. This design eases the assimilation of magnetometers into spacecraft de-521

signs by reducing the need for strict magnetic cleanliness requirements and long mechan-522

ical booms.523

There are several avenues of future development for this algorithm. The most im-524

mediate step to be taken is for the selection of parameters to be automated. We present525

an algorithm to automate the noise cancellation process, but some rudimentary analy-526

sis is still required to select parameters for clustering and pre-processing. We think the527

selection of parameters could be entirely automated. Another avenue of development is528

to test the limits of the sparsity assumption. Sparsity is a very strict assumption that529

may not always be met. In this work, we tested the algorithm using several wideband530

signals. However, the threshold for minimum sparsity is unknown. This assumption can531

be examined through examining signals with partially overlapping spectra to find a point532

of failure. Finally, an interesting scenario to investigate is where several magnetometers533

are mounted within the bus of a spacecraft, but one magnetometer is mounted on a short534

boom, such as on the spacecraft Dellingr (Kepko et al., 2017). In this scenario, the mea-535

surements of one magnetometer may be more accurate than the others. It would be coun-536

terproductive if the reconstructed magnetometer signal had more noise than the signal537

measured by the magnetometer on the boom. It may be possible to account for this by538

designing a programmable ”trust” parameter at the compressive sensing stage. This pa-539

rameter would indicate an elevated degree of trust in one magnetometer over the oth-540

ers.541

In this work, we performed two experiments to validate the algorithm. The first542

experiment separated SWARM magnetic perturbation data from four computer simu-543

lated signals. The algorithm was able to reconstruct the ambient magnetic field signal544

with an RMSE near 2 nT and a correlation of ρ ≈ 0.9992. The reconstruction errors545

are less than the 6 nT intrinsic instrument noise that was added to each virtual mag-546

netometer. The second experiment used real magnetic noise signals generated by cop-547

per coils, and the same SWARM geomagnetic field data. This experiment was able to548

separate four noise signals and reconstruct the background magnetic perturbation sig-549

nal with a RMSE of 6.69 nT and a correlation of ρ = 0.9916 at a 50 Hz cadence.550

These results show the potential of signal processing algorithms to identify and re-551

move magnetic noise from spaceborne magnetometer data. The proposed algorithm di-552

minishes the need to place a magnetometer on a boom or enables significantly shorter553

booms. This enables the possibility of low cost, boomless spacecraft to capture high fi-554

delity magnetic field measurements.555
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